Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction.

نویسندگان

  • Jennifer M Jensen
  • Riyi Shi
چکیده

Axonal conduction deficit is a major contributor to various degrees of disability after spinal cord injury. 4-aminopyridine (4-AP), a potassium channel blocker, has been shown to restore some conduction and improve neurological function in both animal and human studies. Using a double sucrose-gap recording device, we have examined the effects of 4-AP on isolated guinea pig spinal cord white matter after stretch injury. At a concentration of 100 microM, 4-AP increased the amplitude of the compound action potential by 100% while 1 microM 4-AP increased it by 43%, a larger response than seen following compression injury. The length of affected tissue is suggested as a potential explanation of this differential sensitivity to 4-AP. Plastic sections taken from the injury site revealed severe myelin damage, especially in the paranodal area, which may also partially explain why 4-AP has more effect on conduction after stretch injury than compression. In addition, we have shown that while enhancing conductivity in some axons, 4-AP significantly reduced the overall responsiveness to multiple stimuli, as evidenced by increase of the refractory period in response to dual stimuli and the decreased ability to follow repetitive stimuli. This increased refractoriness may be largely attributed to residual deficits in fibers newly recruited by 4-AP treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter.

We have demonstrated that 4-aminopyridine-3-methanol (4-AP-3-MeOH), a 4-aminopyridine derivative, significantly restores axonal conduction in stretched spinal cord white-matter strips and shows no preference in restoring large and small axons. This compound is 10 times more potent when compared with 4-AP and other derivatives in restoring axonal conduction. Unlike 4-AP, 4-AP-3-MeOH can restore ...

متن کامل

The Effects of 4-aminopyridine on Stretched Mammalian Spinal Cord: Role of Potassium Channel in Axonal Condcution

Axonal conduction deficit is a major contributor to various degrees of disability after spinal cord injury. 4-aminopyridine (4-AP), a potassium channel blocker, has been shown to restore some conduction and improve neurological function in both animal and human studies. Utilizing a double sucrose-gap recording device we have examined the effects of 4-AP on isolated guinea pig spinal cord white ...

متن کامل

4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.

4-Aminopyridine (4-AP), a potassium channel blocker, is capable of restoring conduction in the injured spinal cord. However, the maximal tolerated level of 4-AP in humans is 100 times lower than the optimal dose in in vitro animal studies due to its substantially negative side effects. As an initial step toward the goal of identifying alternative potassium channel blockers with a similar abilit...

متن کامل

Functional changes in genetically dysmyelinated spinal cord axons of shiverer mice: role of juxtaparanodal Kv1 family K+ channels.

Axonal dysfunction after spinal cord injury (SCI) and other types of neurotrauma is associated with demyelination and exposure of juxtaparanodal K+ channels. In this study, sucrose gap electrophysiology using selective and nonselective K+ channel blockers, confocal immunohistochemistry, and Western blotting were used to study the role of Kv1.1 and Kv1.2 K+ channel subunits in dysmyelination-ind...

متن کامل

Acrolein-mediated conduction loss is partially restored by K⁺ channel blockers.

Acrolein-mediated myelin damage is thought to be a critical mechanism leading to conduction failure following neurotrauma and neurodegenerative diseases. The exposure and activation of juxtaparanodal voltage-gated K(+) channels due to myelin damage leads to conduction block, and K(+) channel blockers have long been studied as a means for restoring axonal conduction in spinal cord injury (SCI) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2003